Active Learning for Causal Bayesian Network Structure with Non-symmetrical Entropy
نویسندگان
چکیده
Causal knowledge is crucial for facilitating comprehension, diagnosis, prediction, and control in automated reasoning. Active learning in causal Bayesian networks involves interventions by manipulating specific variables, and observing the patterns of change over other variables to derive causal knowledge. In this paper, we propose a new active learning approach that supports interventions with node selection. Our method admits a node selection criterion based on non-symmetrical entropy from the current data and a stop criterion based on structure entropy of the resulting networks. We examine the technical challenges and practical issues involved. Experimental results on a set of benchmark Bayesian networks are promising. The proposed method is potentially useful in many real-life applications where multiple instances are collected as a data set in each active learning step.
منابع مشابه
Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملDevelopment and Validation of Active Performance Indicators of Electrical Safety Using Bow-Tie and Bayesian Network Techniques Case Study: Oil and Gas Industries Construction Projects
Background: With the developing use of electricity in all aspects of human life, electricity accidents have also increased. One of the main components of the for the prevention policy, is the safety performance assessment of the organization's or industry's by using appropriate performance indicators with related operations. Method: This study was a descriptive-analytical of 6 steps inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009